1. Kernel monolitik
Pendekatan kernel monolitik didefinisikan sebagai sebuah antarmuka virtual yang berada pada tingkat tinggi di atas perangkat keras, dengan sekumpulan primitif atau system call untuk mengimplementasikan layanan-layanan sistem operasi, seperti halnya manajemen proses, konkurensi (concurrency), dan manajemen memori pada modul-modul kernel yang berjalan di dalam mode supervisor.
Meskipun jika setiap modul memiliki layanan operasi-operasi tersebut terpisah dari modul utama, integrasi kode yang terjadi di dalam monolithic kernel sangatlah kuat, dan karena semua modul berjalan di dalam address space yang sama, sebuah bug dalam salah satu modul dapat merusak keseluruhan sistem. Akan tetapi, ketika implementasi dilakukan dengan benar, integrasi komponen internal yang sangat kuat tersebut justru akan mengizinkan fitur-fitur yang dimiliki oleh sistem yang berada di bawahnya dieksploitasi secara efektif, sehingga membuat sistem operasi dengan monolithic kernel sangatlah efisien—meskipun sangat sulit dalam pembuatannya.
Pada sistem operasi modern yang menggunakan monolithic kernel, seperti halnya Linux, FreeBSD, Solaris, dan Microsoft Windows, dapat memuat modul-modul yang dapat dieksekusi pada saat kernel tersebut dijalankan sehingga mengizinkan ekstensi terhadap kemampuan kernel sesuai kebutuhan, dan tentu saja dapat membantu menjaga agar kode yang berjalan di dalam ruangan kernel (kernel-space) seminim mungkin.
Di bawah ini ada beberapa sistem operasi yang menggunakan Monolithic kernel:
* Kernel sistem operasi UNIX tradisional, seperti halnya kernel dari sistem operasi UNIX keluarga BSD (NetBSD, BSD/I, FreeBSD, dan lainnya).
* Kernel sistem operasi GNU/Linux, Linux.
* Kernel sistem operasi Windows (versi 1.x hingga 4.x; kecuali Windows NT)
2. Mikrokernel
Pendekatan
mikrokernel berisi sebuah abstraksi yang sederhana terhadap
hardware, dengan sekumpulan primitif atau
system call yang dapat digunakan untuk membuat sebuah sistem operasi agar dapat berjalan, dengan layanan-layanan seperti manajemen
thread, komunikasi antar
address space, dan komunikasi antar
proses. Layanan-layanan lainnya, yang biasanya disediakan oleh kernel, seperti halnya dukungan
jaringan, pada pendekatan
microkernel justru diimplementasikan di dalam ruangan pengguna (
user-space), dan disebut dengan
server.
Server atau disebut sebagai
peladen adalah sebuah
program, seperti halnya program lainnya. Server dapat mengizinkan sistem operasi agar dapat dimodifikasi hanya dengan menjalankan program atau menghentikannya. Sebagai contoh, untuk sebuah mesin yang kecil tanpa dukungan jaringan, server jaringan (istilah
server di sini tidak dimaksudkan sebagai komputer pusat pengatur jaringan) tidak perlu dijalankan. Pada sistem operasi tradisional yang menggunakan
monolithic kernel, hal ini dapat mengakibatkan pengguna harus melakukan rekompilasi terhadap kernel, yang tentu saja sulit untuk dilakukan oleh pengguna biasa yang awam.
Dalam teorinya,
sistem operasi yang menggunakan
microkernel disebut jauh lebih stabil dibandingkan dengan
monolithic kernel, karena sebuah
server yang gagal bekerja, tidak akan menyebabkan
kernel menjadi tidak dapat berjalan, dan
server tersebut akan dihentikan oleh kernel utama. Akan tetapi, dalam prakteknya, bagian dari
system state dapat hilang oleh server yang gagal bekerja tersebut, dan biasanya untuk melakukan proses eksekusi aplikasi pun menjadi sulit, atau bahkan untuk menjalankan server-server lainnya.
Sistem operasi yang menggunakan
microkernel umumnya secara dramatis memiliki kinerja di bawah kinerja sistem operasi yang menggunakan
monolithic kernel. Hal ini disebabkan oleh adanya
overhead yang terjadi akibat proses input/output dalam
kernel yang ditujukan untuk mengganti konteks (
context switch) untuk memindahkan data antara aplikasi dan server.
Beberapa sistem operasi yang menggunakan microkernel:
- IBM AIX, sebuah versi UNIX dari IBM
- Amoeba, sebuah kernel yang dikembangkan untuk tujuan edukasi
- Kernel Mach, yang digunakan di dalam sistem operasi GNU/Hurd, NexTSTEP, OPENSTEP, dan Mac OS/X
- Minix, kernel yang dikembangkan oleh Andrew Tanenbaum untuk tujuan edukasi
- Symbian OS, sebuah sistem operasi yang populer digunakan pada hand phone, handheld device, embedded device, dan PDA Phone.
3. Kernel hibrida
Kernel hibrida aslinya adalah mikrokernel yang memiliki kode yang tidak menunjukkan bahwa kernel tersebut adalah mikrokernel di dalam ruangan
kernel-nya. Kode-kode tersebut ditaruh di dalam ruangan
kernel agar dapat dieksekusi lebih cepat dibandingkan jika ditaruh di dalam ruangan
user. Hal ini dilakukan oleh para arsitek sistem operasi sebagai solusi awal terhadap masalah yang terjadi di dalam mikrokernel: kinerja.
Beberapa orang banyak yang bingung dalam membedakan antara kernel hibrida dan kernel monolitik yang dapat memuat modul kernel setelah
proses booting, dan cenderung menyamakannya. Antara kernel hibrida dan kernel monolitik jelas berbeda. Kernel hibrida berarti bahwa konsep yang digunakannya diturunkan dari konsep desain kernel monolitik dan mikrokernel. Kernel hibrida juga memiliki secara spesifik memiliki teknologi pertukaran pesan (
message passing) yang digunakan dalam mikrokernel, dan juga dapat memindahkan beberapa kode yang seharusnya bukan kode kernel ke dalam ruangan kode kernel karena alasan kinerja.
Di bawah ini adalah beberapa sistem operasi yang menggunakan kernel hibrida:
4. Exokernel
Sebenarnya, Exokernel bukanlah pendekatan kernel sistem operasi yang umum—seperti halnya microkernel atau monolithic kernel yang populer, melainkan sebuah struktur sistem operasi yang disusun secara vertikal.
Ide di balik exokernel adalah untuk memaksa abstraksi yang dilakukan oleh developer sesedikit mungkin, sehingga membuat mereka dapat memiliki banyak keputusan tentang abstraksi hardware. Exokernel biasanya berbentuk sangat kecil, karena fungsionalitas yang dimilikinya hanya terbatas pada proteksi dan penggandaan sumber daya.
Kernel-kernel klasik yang populer seperti halnya monolithic dan microkernel melakukan abstraksi terhadap hardware dengan menyembunyikan semua sumber daya yang berada di bawah hardware abstraction layer atau di balik driver untuk hardware. Sebagai contoh, jika sistem operasi klasik yang berbasis kedua kernel telah mengalokasikan sebuah lokasi memori untuk sebuah hardware tertentu, maka hardware lainnya tidak akan dapat menggunakan lokasi memori tersebut kembali.
Exokernel mengizinkan akses terhadap hardware secara langsung pada tingkat yang rendah: aplikasi dan abstraksi dapat melakukan request sebuah alamat memori spesifik baik itu berupa lokasi alamat physical memory dan blok di dalam hard disk. Tugas kernel hanya memastikan bahwa sumber daya yang diminta itu sedang berada dalam keadaan kosong—belum digunakan oleh yang lainnya—dan tentu saja mengizinkan aplikasi untuk mengakses sumber daya tersebut. Akses hardware pada tingkat rendah ini mengizinkan para programmer untuk mengimplementasikan sebuah abstraksi yang dikhususkan untuk sebuah aplikasi tertentu, dan tentu saja mengeluarkan sesuatu yang tidak perlu dari kernel agar membuat kernel lebih kecil, dan tentu saja meningkatkan performa.
Exokernel biasanya menggunakan library yang disebut dengan libOS untuk melakukan abstraksi. libOS memungkinkan para pembuat aplikasi untuk menulis abstraksi yang berada pada level yang lebih tinggi, seperti halnya abstraksi yang dilakukan pada sistem operasi tradisional, dengan menggunakan cara-cara yang lebih fleksibel, karena aplikasi mungkin memiliki abstraksinya masing-masing. Secara teori, sebuah sistem operasi berbasis Exokernel dapat membuat sistem operasi yang berbeda seperti halnya
Linux,
UNIX, dan
Windows dapat berjalan di atas sistem operasi tersebut.
sumber :
http://id.wikipedia.org/wiki/Kernel_%28ilmu_komputer%29